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High-Order CESE Methods for the Euler Equations

David L. Bilyeu,∗ Yung-Yu Chen, † and S.-T. John Yu ‡

The Ohio State University, Columbus, OH 43210, USA

Recently, Chang1 reported a new class of high-order CESE methods for solving nonlin-
ear hyperbolic partial differential equations. A series of high-order algorithms have been
developed based on a systematic, recursive formulation that achieves fourth-, sixth-, and
eighth-order accuracy. The new high-order CESE method shares many favorable attributes
of the original second- order CESE method, including: (i) compact mesh stencil involving
only the immediate mesh nodes surrounding the node where the solution is sought, (ii) the
CFL stability constraint remains to be the same, i.e., ≤ 1, as compared to the original
second-order method, and (iii) superb shock capturing capability without using an approx-
imate Riemann solver. The new algorithm has been demonstrated by solving Burger’s
equation.

In the present paper, we extend Chang’s high-order method for system of linear and
nonlinear hyperbolic partial differential equations. A general formulation is presented for
solving the coupled equations with arbitrarily high-order accuracy. To demonstrate the
formulation, several linear and nonlinear cases are reported. First, we solve a convection
equation with source term and the linear acoustics equations. We then solve the Euler
equations for acoustic waves, a blast wave, and Shu and Osher’s test case for acoustic waves
interacting with a shock. Numerical results show higher-order convergence by continuous
mesh refinement.

I. Introduction

In this work, we extend Chang’s fourth-order CESE method1 for one nonlinear hyperbolic equation to a
system of coupled hyperbolic partial differential equations (PDEs). The new formulation is general and can
be used to achieve arbitrarily order of convergence. To demonstrate the capabilities of the new scheme, we
apply the method to solve three sets of equations: (i) the one-dimensional Euler equations, (ii) the linearized
acoustic equations, and (iii) a convection equation with a source term.

The original second-order CESE method2 solves the hyperbolic PDEs by discretizing the space-time
domain by using the conservation elements (CEs) and solution elements (SEs). The profiles of unknowns are
prescribed by assumed discretization inside SEs. Aided by the approximation for the unknowns in the SEs,
space-time flux conservation can be enforced over each CE. The calculation of space-time flux conservation
results in the formulation for updating the unknowns in the time marching process. The special features
of the CESE method include: (i) The a scheme, the core scheme of the CESE method, is non-dissipative.
(ii) The CESE method has the most compact mesh stencil and it involves only the immediate neighboring
mesh points that surround the mesh node where the solution is sought. (iii) The method uses explicit
integration in time marching. The stability criterion is CFL ≤ 1. (iv) No approximate Riemann solver is
used and the scheme is simple and efficient.

This paper is organized as the following. Section II reports the fourth-order CESE method for the
coupled equations formulated in a vector form. Section III shows the application of the general formulation
to the one-dimensional Euler, linear acoustic, and convection equation. Section IV provides the results and
discussions. In Section V, we draw our conclusions.

∗Ph.D. Student, Dept. of Mechanical Engineering, bilyeu.4@osu.edu, and AIAA Student Member.
†Ph.D. Candidate, Dept. of Mechanical Engineering, chen.1352@osu.edu.
‡Associate Professor, Dept. of Mechanical Engineering, yu.274@osu.edu and AIAA Member.
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II. Arbitrary-Order, One-Dimensional CESE Method

Consider a system of coupled convection equations:

∂U

∂t
+

∂F

∂x
= S, (1)

where

U
def
= (u1, u2, u3, · · · , uM )T ,

F
def
= (f1, f2, f3, · · · , fM )T ,

S
def
= (s1, s2, s3, · · · , sM )T ,

There are M equations to be solved in the system Eq. (1).
The space-time stencil used in this derivation is the same as that reported by Chang3 and is repeated

here for completeness. In Fig. (1) the solid dots A, C, and E are the solution points. A is at (xj , t
n) and C

and E are at (xj−1/2, t
n−1/2) and (xj+1/2, t

n−1/2), respectively. P+ is between M+ and F . P− is between
M− and B. The distance between P± and M± is determined by a parameter τ . The rectangles ABCD and
ADEF are basic CEs (BCEs), while the rectangle BCEF is the compound CE (CCE) associated with the
solution point A.

b bc b

b c b bcb bbb

AB

C D E

FM+ P+M−P−

∆t
2

∆x
4

∆x
2

∆x
2
∆x
2

∆x
4

x

t
(1+τ)

∆x
4 (1−τ)

∆x
4(1+τ)

∆x
4(1−τ)

∆x
4

Fig. 1: Mesh nodes in the one-dimensional CESE methods.

To facilitate the discussion, we let SE(j, n) denotes the SE located at x = xj and t = tn. To denote
high-order derivatives, we use the following notations:

umxatb =
∂a+bum

∂xatb

In SE(j, n), the unknown variables um, m = 1, . . . ,M , are approximated by a Taylor series:

u∗
m(x, t; j, n)

def
=

NM
∑

a=0

NM−a
∑

b=0

(umxatb)
n
j

a!b!
(x− xj)

a
(t− tn)

b
, (2)

where NM is the desired order subtracted by 1, e.g., for the fourth-order scheme, NM = 3. The superscript
∗ represents the numerical approximation of the variable. Inside of a SE umxatb are constant. The flux
functions fm, m = 1, . . . ,M , can also be represented with the Taylor expansion as:

f∗
m(x, t; j, n)

def
=

NM
∑

a=0

NM−a
∑

b=0

(fmxatb)
n
j

a!b!
(x− xj)

a
(t− tn)

b
. (3)
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Inside a SE, fmxatb are constant. An advantage of a Taylor series is that its derivatives can also be expressed
as a Taylor series

u∗
mxzti(x, t; j, n) =

A
∑

a=0

B−a
∑

b=0

(umxa+ztb+i)nj
a!b!

(x− xj)
a
(t− tn)

b
; A=NM−z

B=NM−z−i (4)

and

f∗
mxzti(x, t; j, n) =

A
∑

a=0

B−a
∑

b=0

(fmxa+ztb+i)nj
a!b!

(x− xj)
a
(t− tn)

b
; A=NM−z

B=NM−z−i. (5)

Equations 2 and 3 contain 2
∑NM+1

n=1 n unknowns. In the following derivation, it will be shown, for
a given SE(j, n), the only independent variables are the spatial derivatives (um)nj , (umx)

n
j , . . . , (umxa)nj ,

m = 1, . . . ,M , a = NM . Since it is assumed that the fluxes are known functions of the flow variables. The
flux terms in Eq. (3) can be determined from the chain rule. To proceed, we define:

fml

def
=

∂fm
∂ul

, fml,k

def
=

∂2fm
∂ul∂uk

, fml,k,p

def
=

∂3fm
∂ul∂uk∂up

, . . . (6)

where m, l, k, p = 1, . . . ,M . For SE(j, n), we obtain:

∂fm
∂y1

=

Neq
∑

l

∂fm
∂ul

∂ul

∂y1
, y1 = x, t

∂2fm
∂y1∂y2

=

Neq
∑

l

∂fm
∂ul

∂2ul

∂y1∂y2
+

Neq
∑

l,k

∂2fm
∂ul∂uk

∂ul

∂y1

∂uk

∂y2
(y1, y2) = (x, x), (t, t), (x, t)

∂3fm
∂y1∂y2∂y3

=

Neq
∑

l

∂fm
∂ul

∂3ul

∂y1∂y2∂y3
+

Neq
∑

l,k

∂2fm
∂ul∂uk

(

∂2ul

∂y1∂y2

∂uk

∂y3
+

∂2ul

∂y1∂y3

∂uk

∂y2
+

∂2ul

∂y2∂y3

∂uk

∂y1

)

+

Neq
∑

l,k,p

∂3fm
∂ul∂uk∂up

∂ul

∂y1

∂uk

∂y2

∂up

∂y3
(y1, y2, y3) =

(x, x, x), (t, t, t),

(x, x, t), (x, t, t),

(7)

for m = 1, . . . ,M . Equation Eq. (7) shows the derivatives required by the fourth order scheme but these
equations will continue to the derivatives required by the desired order.

By substituting Eqs. (2) and (3) into Eq. (1) in a given SE(j, n), we demand:

∂u∗
m(x, t; j, n)

∂t
+

∂f∗
m(x, t; j, n)

∂x
= sm, m = 1, . . . ,M. (8)

Then by taking derivatives of Eq. (8) in both space and time we get

(u∗
mt)

n
j = (sm)nj − (f∗

mx)
n
j , (u∗

mxt)
n
j = (smx)

n
j − (f∗

mxx)
n
j , (u∗

mtt)
n
j = (smt)

n
j − (f∗

mxt)
n
j , . . . .

This result can be written in a more general form as

u∗
mxzti = s∗mxzti−1 − f∗

mxz+1ti−1 (9)

for m = 1, . . . , M , z = 0, . . . NM , i = 1, . . .NM − z. As shown in Eqs. (7) and (9), the only independent
variables are the spatial derivatives for each governing equation. As such, there are (NM + 1)M unknowns
for M equations associated with a mesh point. For example, a fourth-order representation of the Euler
equation would contain 4 unknowns per equation, giving a total of 12 unknowns for the one-dimensional
Euler equations.

To proceed, for each of m = 1, . . . ,M , the unknowns are categorized as: (i) even-order derivatives,
(um)nj , (umxx)

n
j , . . . , umx2n and (ii) odd-order derivatives, (umx)

n
j , (umxxx)

n
j , . . .umx2n+1 n = (OD − 1)/2.

In what follows, we introduce an arbitrary order CESE c-τ scheme for a system of M PDEs. The c-τ scheme
uses space-time integration for the advancing formula for the even-order derivatives, while the odd-order
derivatives are calculated from a central-difference-like procedure.
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II.A. Even-Order Derivatives

It can be shown that by differentiating Eq. (8) twice with respect to x, we obtain:

∂u∗
mxx(x, t; j, n)

∂t
+

∂f∗
mxx(x, t; j, n)

∂x
=

∂2s∗m
∂x2

, m = 1, . . . ,M, (10)

or in a more general form

∂u∗
mx2z(x, t; j, n)

∂t
+

∂f∗
mx2z(x, t; j, n)

∂x
=

∂2zs∗m
∂x2z

, z = 0, 1, . . . , (NM − 1)/2. (11)

Consider the Euclidean space E2 with the coordinates (ξ1, ξ2) = (x, t). Aided by defining:

h
∗
mx2z

def
= (f∗

mx2z(x, t; j, n), u∗
mx2z (x, t; j, n))T , z = 1, . . . , (NM − 1)/2,

and the divergence theorem, Eqs. (8) and (11) can be transformed into integral equations as:

∮

S(V )

h
∗
mx2z · ds = s∗mx2z , z = 0, . . . , (NM − 1)/2, (12)

where S(V ) is the closed boundary of an arbitrary region V and ds is defined in Fig. (2).

S(V )

ds

dr

r = (x, t)

t

x

Fig. 2: Space-time integration over an arbitrary closed domain V .

We define:

u∗
mx̄z t̄k

def
=

∂z+ku∗
m

∂xztk

(

∆x

4

)z (
∆t

4

)k

(13)

f∗
mx̄z t̄k

def
=

∂z+kf∗
m

∂xztk

(

∆x

4

)z (
∆t

4

)k

(14)

smx̄z t̄k
def
=

∂z+ksm
∂xztk

(

∆x

4

)z (
∆t

4

)k

(15)

where ∆x = xj+1/2 − xj−1/2 and ∆t = tn − tn−1. In order to write equations more compactly, any local
constant enclosed within a square bracket will be evaluated at the location specified by the subscript and
superscript written on the enclosing square bracket, e.g.:

(umxx)
n
j + (umxxx)

n
j

∆x

2
+ (umxxt)

n
j

∆t

2
≡

[

umxx + umxxx
∆x

2
+ umxxt

∆t

2

]n

j

.
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Aided by Eqs. (13) and (14), Eq. (12) gives:

(umx̄z)
n
j =

1

∆x

∫∫

smx̄zdV+

1

2

NM−z
∑

k=0

2k

(k + 1)!

(

[

umx̄k+z +
∆t

∆x
fmx̄z t̄z+k

]n−1/2

j−1/2

+

[

(−1)iumx̄k+z −
∆t

∆x
fmx̄z t̄z+k

]n−1/2

j+1/2

)

−

NM−z−1

2
∑

k=1

22k

(2k + 1)!
(umx̄2k+z)

n
j

(16)

Equation (16) provides and explicit formulation for all even spatial derivatives. As long as the highest
even derivative is calculated first the last term on the RHS will have already been calculated. It should also
be noted that the ∗ is absent from the source term. This is because the source term treatment varies when
dealing with different flow physics.

II.B. Odd-Order Derivatives

In order to compute the odd derivatives a central differencing approach is applied following the c-τ scheme.
There are two possible formulations for the odd-order derivatives (i) the standard c-τ scheme which is
applicable if there are no discontinuities present and (ii) a re-weighted c-τ scheme which is used if there are
discontinuities in the flow field.

In order to mitigate the dissipation as the local CFL number decreases the central differencing is applied
at points P+ and P−. Where P± are points located at

x
(

P+
)

= xj + (1 + τ)
∆x

4
= xj+1/2 − (1 − τ)

∆x

4
, (17)

x
(

P−
)

= xj − (1 + τ)
∆x

4
= xj−1/2 + (1− τ)

∆x

4
. (18)

Where τ is the absolute value of the local CFL number.
First we define u∗

mx̄z(P±) to be the Taylor series expansion of (umx̄z)jn from (xj , t
n) to x(P±). Then we

can solve for umx̄z+1 by subtracting u∗
mx̄z(P−) from u∗

mx̄z(P+):

umx̄z+1 =
umx̄z(P+)− umx̄z(P−)

2(1 + τ)
−

NM−1−z

2
∑

k=1

1

(2k + 1)!
umx̄2k+1+z(1 + τ)2k, (19)

for z = 0, 2, 4, . . . , NM − 1 and m = 1, 2, . . . ,M . Since we can not calculate u∗
mx̄z(P±) we approximate it by

u′
mx̄z(P±). Where u′

mx̄z(P±) is the Taylor series expansion from (xj±1/2,tn−1/2) to x(P±) respectively.

umx̄z+1 =
u′
mx̄z(P+)− u′

mx̄z(P−)

2(1 + τ)
−

NM−1−z

2
∑

k=1

1

(2k + 1)!
umx̄2k+1+z(1 + τ)2k,

When discontinuities are present in the flow field a re-weighting of the derivatives is required. All
previously derived re-weighting schemes used in second order CESE schemes should be applicable to the
higher order CESE schemes. In this paper the derivation of the W2 scheme3 will be presented. First the
function W is given as

W±(x−, x+, α) =
|x∓|

α

|x−|α + |x+|α
. (20)

To remain stable in the presence of discontinuities α ≥ 1. The odd-order derivatives are now defined by:

(umx̄z)
n
j

def
= (ωm−)z (ûmx̄−z) + (ωm+)z (ûmx̄+z) , (21)
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where

(ωm±)z = W±(u
c
mx̄−z , uc

mx̄+z , αz), (22)

with

ûmx̄∓z
def
= ±

(umx̄z−1)nj − u′
mxz−1(P∓)

1 + τ
,

uc
mx̄z∓

def
= ±

1

2
((umxz−1)nj − (u′

mxz−1)nj∓1/2),

where (u′
mxz−1)nj±1/2 is the Taylor series expansion from (xj±−1/2, n− 1/2) to (xj±−1/2, n).

The above equations provide an explicit formulation for the odd spatial derivatives when discontinuities
are present in the flow field.

III. Jacobian Matrices

In this section we present the derived Jacobian matrices for the different flow physics used as test cases.
The three flow physics used are the Euler, linear acoustic, and convection equations.

To construct a fourth-order CESE solver for the one-dimensional Euler equations, we plug the following
unknown vector and flux function vector into Eq. (1):

U = (u1, u2, u3)
T =

(

ρ, ρv, p/(γ − 1) + ρv2/2
)T

,

F =
(

ρv, ρv2 + p, (ρE + p)v
)T

=
(

u2, (γ − 1)u3 + 1/2(3− γ)u2
2/u1, γu2u3/u1 − 1/2(γ − 1)u3

2/u
2
1

)T
,

where ρ is the density, v is the velocity, E is the internal energy and γ is the ratio of specific heat. For
the higher order derivatives the order of differentiation does not mater, i.e. fml,k

= fmk,l
and fml,k,p

=
fml,p,k

= fmk,l,p
= fmk,p,l

= fmp,l,k
= fmp,k,l

so only the first such permutation is expressed. The first-order
derivatives of the flux function f1 are:

f11 = 0, f12 = 1, f13 = 0,

and the second- and third-order derivatives are:

f1l,k = 0, l, k = 1, 2, 3,

f1l,k,p
= 0, l, k, p = 1, 2, 3.

The first-order derivatives of the flux function f2 are:

f21 =
1

2
(γ − 3)

u2
2

u2
1

, f22 = (3 − γ)
u2

u1
, f23 = γ − 1,

the second-order derivatives are:

f21,1 = −
u2
2(γ−3)

u3
1

, f21,2 = (γ−3)u2

u2
1

, f21,3 = 0,

f22,2 = (3−γ)
u1

, f22,3 = 0, f23,3 = 0,

and the third-order derivatives are:

f21,1,1 = 3
u2
2(γ−3)

u4
1

, f21,1,2 = −2 (γ−3)u2

u3
1

, f21,1,3 = 0,

f21,2,2 = (γ−3)
u2
1

, f21,2,3 = 0, f21,3,3 = 0,

f22,2,2 = 0, f22,2,3 = 0, f23,3,3 = 0.

The first-order derivatives of the flux function f3 are:

f31 = − γu2u3

u2
1

+
(γ−1)u3

2

u3
1

, f32 = γu3

u1
− 3

2 (γ − 1)
u2
2

u2
1

, f33 = γu2

u1
,
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the second-order derivatives are:

f31,1 = 2 γu2u3

u3
1

− 3
(γ−1)u3

2

u4
1

, f31,2 = − γu3

u2
1

+ 3
(γ−1)u2

2

u3
1

, f31,3 = − γu2

u2
1

,

f32,2 = −3 (γ−1)u2

u2
1

, f32,3 = γ
u1
, f33,3 = 0,

the third-order derivatives are:

f31,1,1 = 12
u3
2(γ−1)

u5
1

− 6 γu2u3

u4
1

, f31,1,2 = 2 γu3

u3
1

− 9
(γ−1)u2

2

u4
1

, f31,1,3 = 2 γu2

u3
1

,

f31,2,2 = 6(γ − 1)u2

u3
1

, f31,2,3 = − γ
u2
1

, f31,3,3 = 0

f32,2,2 = −3 γ−1
u2
1

, f32,2,3 = 0, f33,3,3 = 0.

Next we present the derived Jacobian for the linear acoustic equation

U = (u1, u2)
T = (ρ, v)

T
,

F =

(

ρinfv,
a2inf
ρinf

ρ

)T

=

(

ρinfu2,
a2inf
ρinf

u1

)T

The first-order derivatives for the flux functions are:

f11 = 0,f12 = ρinf

f21 =
a2inf
ρinf

,f22 = 0.

Since all of the first-order derivatives are constant the higher derivatives are zero. This reduces the calculation
of all fluxes to a matrix vector multiplication.

Finally we present the derivation needed for the convection with source term equation.

du

dt
+ a

du

dx
= aS0 cos(x)

where a and S0 are constant. In this case the source term is only a function of space and an exact integration
is possible. For S = aS0 cos(x) the integrals become

∫∫

S = aS0
∆t

2
sin(x)|

xj+1/2
xj−1/2

,

∫∫

Sx̄x̄ = −aS0

(

∆x

4

)2
∆t

2
sin(x)|

xj+1/2
xj−1/2

, . . . ,

∫∫

Sx̄2n = (−1)n/2aS0

(

∆x

4

)2n
∆t

2
sin(x)|

xj+1/2
xj−1/2 , for n = 0, 1, . . . ,

NM − 1

2
.

IV. Results

The following test cases show how the CESE method improves as the order of accuracy of the method
employed increases. These cases are presented, including (i) acoustic waves modeled by the linearized Euler
equations, (ii) acoustic waves modeled by the nonlinear Euler equations, and (iii) a simple convection equation
with a source term. For all three cases, we calculate the order of accuracy by using the following formula:

ℓ2
def
=

√

∫

|φ|2dx ≈

√

∑

i

|φi|2∆xi

where φi is defined as the difference between the analytical and numerical solution and ∆xi is the grid
spacing at a given location i. In all cases ∆x is constant. The rate of convergence is taken as the slope of
the best fit line through the points (log10(∆x), log10(ℓ

2) ).
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The first test case is the calculation of acoustic waves by solving the linearized Euler equations. The
analytical solution for the linearized acoustic wave equation is

ρ = ρinf +
ερinf
ainf

cos

(

2nπ

l
(x− ainft)

)

U = Uinf + εcos

(

2nπ

l
(x− ainft)

)

for
l

2
< x <

l

2
; t > 0

where ρ, U , a, n, l, and ε are respectively the density, velocity, speed of sound, number of waves, length of
the domain, and an amplification factor. The speed of sound is equal to

√

γp/ρ with γ=1.4. The values with
a subscript inf are mean values of the flow variables. For this test case pinf=1, ρinf=γ, ε=10−2, n=1, and
l=2. The run time was equal to 4.25 l

ainf
which allows the wave to propagate through the domain 4.25 times.

The CFL number is constant throughout the domain and is equal to 0.75. As seen in Fig. (3) our desired
order of convergence closely matches the actual order of convergence. Table (1) shows the desired order
of convergence, the actual order of convergence, and the normalized time. The relative numerical cost was
calculated by taking the average simulation time per cell per iteration for multiple resolutions and dividing
it by the cost of the 2nd order version. The computational scaling shows that by doubling the order of the
Taylor series the time required to complete a simulation will increase by about 22.2.
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Fig. 3: The ℓ2 norm of numerical solutions where points are actual calculated data and the line is a best-fit
cure of the data.

Desired Order Actual Order Normalized Time

2 2.03 1.00

4 4.06 3.43

8 8.12 14.47

12 12.21 34.33

16 16.48 67.98

20 20.52 116.89

Table 1: Convergence rates for the linear acoustic solver and the average normalized time for case.

The above cases showed that we were able to achieve higher-order convergence for coupled, linear, wave
equations. In the following, we show fourth-order convergence for solving non-linear equations but for linear
physics . The same analytical solution used for the linear acoustic equation is used. There are some problems
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when using this solution because the Euler solver will capture the non-linearities present in the flow field
while the “analytical” solution does not. This will lead to increasing errors in the analytical solution as
∆x decreases. To mitigate the error, the perturbation was reduced to 10−6. For this test case pinf=1/γ,
ρinf=1, n=2, and l=4 and the simulation time is 2.5 l

ainf
. The CFL number is almost constant throughout

the domain and is equivalent to 0.8. As seen in Fig. (4) we achieved a convergence rate of 2.01 and 3.97 for
the second- and fourth-order CESE schemes, respectively.
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+++++
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+

2nd

Fig. 4: The ℓ2 norm of the numerical solutions of the Euler solver for solving the acoustic waves.

The final test case is solving the convection equation with a source term. Under the periodic boundary
condition, the analytical solution to this problem is

u(x, t) = cos(x − at) + S0sin(x),

−2π < x < 2π; t > 0.

For the convergence tests, a = S0 = 1 and the test time was set to 2.5 l
a , where l is the length of the domain.

In all calculations, CFL = 0.7. Shown in Fig. (5) and Table (2), the actual convergence rate agrees well with
the order of accuracy of the scheme employed. The computational scaling shows that by doubling the order
of the Taylor series the time required to complete a simulation will increase by about 22.2.

Desired Order Actual Order Normalized Time

2 2.00 1.00

4 4.01 5.22

8 7.95 23.65

12 12.12 59.04

16 16.05 115.83

20 20.09 190.95

Table 2: Convergence rates of the numerical solutions of the convection equation, and the averaged, normal-
ized time for case with different order of accuracy.
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Fig. 5: The ℓ2 norm of numerical solutions of the Convection equation with source term. The symbols
represent the actual calculated data and the lines represent the best-fit curves of the data.

Another important aspect to consider is whether the higher-order resolution is worthy for the additional
computational cost. For this, we refer to Figures (6) and (7). Shown in the figures, it is more efficient to use
a higher-order method rather than increasing the resolution for a linear solver.
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Fig. 6: The ℓ2 norm versus the computational time for the solutions of the linear acoustic wave equations.
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Fig. 7: The ℓ2 norm versus the computational time for the solution of the convection equation.

Next, we demonstrate the new high-order CESE method by examining numerical resolution for shocks
and contact discontinuities. We will run two different test cases at various resolutions and compare the
results with an “analytical” results obtained by using very fine mesh. Three solvers will be used in the
test cases, the second- and the fourth-order CESE and the fifth- order space third-order time monotonicity
preserving (MP53) method.4 The comparison between the 4th-order CESE scheme and the MP53 method
is not completely valid because the CESE scheme employed has higher order in time but low order in space.
The test cases chosen are Woodward’s blast wave problem and Shu and Osher’s problem. Woodward’s
blast wave problem5 consists of two shock waves of different strengths heading towards each other with wall
boundary conditions. The initial conditions are

(u, ρ, p) =











(0, 1, 103) 0 < x < 0.1

(0, 1, 10−2) 0.1 < x < 0.9

(0, 1, 102) 0.9 < x < 1.0

0.0 < t < 0.038.

The second test case is Shu and Osher’s problem,6 in which a Mach 3 shock moves to the right and collides
with an entropy disturbance moving to the left. The boundary conditions are non-reflective and the initial
conditions are

(u, ρ, p) =

{

(2.629369, 3.857143, 10.3333) −1 < x < −0.8

(0, 1 + 0.2 sin(5πx), 1) −0.8 < x < 1.0

0.0 < t < 0.47.
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Fig. 8: Plots of the density profiles of the Woodwards blast wave problem. The converged simulation was
done by using the fourth-order CESE with 3201 points. For better presentation, only a subset of the domain
is shown in these plots.
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Fig. 9: Plots of the calculated density profiles for Shu and Osher’s problem. Each plot has a different spatial
resolution. The converged simulation was done by using the fourth-order CESE scheme with 3201 points.

For both simulations using the second- and fourth-order CESE methods, α in Eq. (20) is set to be unity.
Shown in Figures (8) and (9), the fourth-order CESE method provides more accurate solutions than the
second-order CESE method in the region where the solution is smooth. When discontinuities are present,
the fourth-order scheme still does a better job but has more overshoots than the second-order CESE method.
Moreover, the results obtained by using CESE schemes compare favorably with that by the MP53 scheme.

V. Concluding Remarks

In this paper, we extended Chang’s fourth-order CESE method for one convection equation for solving
a system of coupled hyperbolic PDE’s with arbitrarily high-order convergence. Numerical results show that
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the extended algorithm can achieve higher-order convergence for both linear and non-linear hyperbolic PDEs.
The shock-capturing capability of the new method was comparable to that of the original second-order CESE
scheme as well as that of the fifth-order space third-order time monotonicity preserving scheme. Further
development of the high-order CESE method can benefited from investigations in several areas, including
the effect of different limiters on the higher-order derivatives, and the effects of the boundary condition
treatments and the source-term treatments for high-order accuracy.
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